Measuring the prion-like character of tau
by TIRF microscopy
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Introduction

Increasing evidence suggests that neurodegenerative diseases such as Alzheimer’'s disease share common molecular features with prion disorders. Prions are protein aggregates capable of self-replication,
allowing their spread through the brain with fatal outcome.The replication of prions is thought to occur by fragmentationR". In this study we assessed the ability of the Alzheimer’s protein tau to amplify using
SAVE imaging - a recently developed approach to visualise single unlabelled protein aggregatesRe®.

Method - SAVE imaging (Single Aggregate Visualisation by Enhancement)Re® Quantitating fibril elongation and fragmentation

a) Following the aggregation of tau by SAVE imaging. Tau aggregation is first dominated by a
rapid elongation phase (0-24h) followed by a fragmentation phase.
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In order to detect amyloid species evolving during the aggregation of full-length tau, we take aliquots R .' + aH(. + 2000; R * €xp.
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Aliquots were taken from the aggregation mixture at indicated time points (x-axis) and centrifuged to 0 0 500 1000 0 200 400 600

separate soluble and insoluble aggregates. These were added to the extracellular medium of primary time(h) time(h)
cortical rat neurons and astrocytes and cell death was measured by propodium iodide staining.

a) Representative images (N=3). DAPI: blue, propidium iodide: red.

b) Toxicity of tau aggregation mixture increases as a function of aggregation time (N=3, error bars s.e.m.)

k,=1+0.5-102uM h™"; k=2 +1-107 pM h™! k,=5+3-102uM h"; k=2 +1-107 uyM h™!

a b b) Electron micrographs of P301S tau fibrils after 24h (max. length) and 672h (min. length).
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Summary and Discussion Simulations of fibril amplification in a cell

We can follow the aggregation of tau on a TIRF microscope "SAVE imaging". Typical stochastic trajectories for tau aggregation and amplification in a cell-like volume (10

The aggregation of tau is first dominated by rapid fibril elongation and then by slow fragmentation. um?®) starting from a single tau fibril. a) Number of fibrils. b) Remaining monomer concentration.

We could fit this data to a simple kinetic model of breakable fibril assembly to obtain the kinetic rates for ¢) Apparent fibril lengths during fragmentation process

fibril elongation and fragmentation. This allowed us to make simulations of fibril amplification in a cell -1/
m

and derive the doubling times of wt tau (440 h) and P301S tau (84 h). The doubling time t, of a tau fibril depends on elongation rate k., kK
fragmentation rate k; and the concentration of free monomers m: I+ m/Km

Let's assume fragmentation is the underlying mechanism for tau propagation...
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We can calculate the time it takes to form a certain number N of fibrils from a single fibril:
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This is in good
16 months for wt tau ’ agreement with
3 months for P301S tau experimental data from

mouse modelsRe¥
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